सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$(ii)$ $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$
$\lambda$ के सभी मानों का समुच्चय, जिसके लिये समीकरण निकाय, $x -2 y -2 z =\lambda x$, $x +2 y + z =\lambda y$ $- x - y =\lambda z$ के अनिरर्थक हल हो, होगा
यदि $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$, तो $ k $ का मान है
यदि समीकरणों, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$ के निकाय का असंगत हल है, तो $ k$ का मान होगा
यदि समीकरण निकाय $x-2 y+3 z=9$, $2 x+y+z=b$, $x-7 y+a z=24$ के अनंत हल हो, तो $a - b$ का मान होगा
मान लीजिए कि $\alpha, \beta$ तथा $\gamma$ ऐसी वास्तविक संख्याएँ है जिनके लिए रैखिय समीकरणों
$x+2 y+3 z=\alpha$
$4 x+5 y+6 z=\beta$
$7 x+8 y+9 z=\gamma-$
का निकाय (system of linear equations) संगत (consistent) है। मान लीजिए कि $| M |$ आव्यूह (matrix)
$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
का सारणिक (determinant) है।
मान लीजिए कि $P$ उन सभी $(\alpha, \beta, \gamma)$ को अंतर्विष्ट करने वाला समतल है। जिनके लिए ऊपर दिए गए रैखिक समीकरणों का निकाय संगत है, और $D$, बिन्दु $(0,1,0)$ की समतल $P$ से दूरी के वर्ग (square of the distance) का मान है।
($1$) $| M |$ का मान. . . .है।
($2$) $D$ का मान. . . .है।