$x \in R , x \neq 0, x \neq 1$ के लिए माना $f_{0}(x)=\frac{1}{1-x}$ तथा $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right), n=0,1,2, \ldots$ है, तो $f_{100}(3)+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)$ बराबर है
$\frac {8}{3}$
$\frac {4}{3}$
$\frac {5}{3}$
$\frac {1}{3}$
माना फलन $f : R \rightarrow R$ इस प्रकार है कि $f ( x )= x ^{3}+ x ^{2} f ^{\prime}(1)+ xf ^{\prime \prime}(2)+ f ^{\prime \prime \prime}(3), x \in R$ तो $f(2)$ बराबर है
यदि $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, तब $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ बराबर है
मान लें कि $x \in R$ के लिए $R$ सभी वास्तविक संख्याओं का समुच्चय है और $f(x)=\sin ^{10} x\left(\cos ^8 x+\right.$ $\left.\cos ^4 x+\cos ^2 x+1\right)$. मान लें कि $S=\left\{\lambda \in R \mid\right.$ में एक बिंदु $c \in(0,2 \pi)$ है जिसके लिए $\left.f^{\prime}(c)=\lambda f(c)\right\}$. तब
यदि $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ है, तथा $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$ है, तो $S :$
यदि $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$, $x \in R$ के लिए, तब $f(2002) = $