સાબિત કરો કે નીચે આપેલી ચારેય શરતો સમકક્ષ છે :$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

First, we have to show that $(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A-B \neq \varnothing$

If possible, suppose $A-B \neq \varnothing$

This means that there exists $x \in A, x \neq B,$ which is not possible as $A \subset B$

$\therefore A-B=\varnothing$

$\therefore A \subset B \Rightarrow A-B=\varnothing$

Let $A-B=\varnothing$

To show: $A \subset B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$

$\therefore A-B=\varnothing \Rightarrow A \subset B$

$\therefore(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A \cup B=B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$

$\therefore A-B=\varnothing \Rightarrow A \subset B$

$\therefore(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A \cup B=B$

Clearly, $B \subset A \cup B$

Let $x \in A \cup B$

$\Rightarrow x \in A$ or $x \in B$

Case $I:$ $x \in A$

$\Rightarrow x \in B$           $[\because A \subset B]$

$\therefore A \cup B \subset B$

Case $II:$ $x \in B$

Then, $A \cup B=B$

Conversely, let $A \cup B=B$

Let $x \in A$

$\Rightarrow x \in A \cup B \quad[\because A \subset A \cup B]$

$\Rightarrow x \in B \quad[\because A \cup B=B]$

$\therefore A \subset B$

Hence, $(i) \Leftrightarrow(\text {iii})$

Now, we have to show that $(i) \Leftrightarrow(i v)$

Let $A \subset B$

Clearly $A \cap B \subset A$

Let $x \in A$

We have to show that $x \in A \cap B$

As $A \subset B, x \in B$

$\therefore x \in A \cap B$

$\therefore A \subset A \cap B$

Hence, $A=A \cap B$

Conversely, suppose $A \cap B=A$

Let $x \in A$

$\Rightarrow x \in A \cap B$

$\Rightarrow x \in A$ and $x \in B$

$\Rightarrow x \in B$

$\therefore A \subset B$

Hence, $(i) \Leftrightarrow(i v)$

Similar Questions

જો બે ગણો $A$ અને $B$ હોય ,તો $A - B$ = . . . . 

જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો  મેળવો : $D-A$

છેદગણ શોધો :  $X=\{1,3,5\} Y=\{1,2,3\}$

આપેલ સંબંધ જુઓ :

$(1) \,\,\,A - B = A - (A \cap B)$   

$(2) \,\,\,A = (A \cap B) \cup (A - B)$   

$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$

પૈકી   . . .  . સત્ય છે.

આપેલ જોડના ગણ પરસ્પર અલગગણ છે? : $\{ x:x$ એ યુગ્મ પૂર્ણાક છે $\} $ અને $\{ x:x$ એ અયુગ્મ પૂર્ણાક છે $\} $