दिखाइए कि निम्नलिखित चार प्रतिबंध तुल्य हैं

$(i)$ $A \subset B$

$(ii)$ $A-B=\phi$

$(iii)$ $A \cup B=B$

$(iv)$ $A \cap B=A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

First, we have to show that $(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A-B \neq \varnothing$

If possible, suppose $A-B \neq \varnothing$

This means that there exists $x \in A, x \neq B,$ which is not possible as $A \subset B$

$\therefore A-B=\varnothing$

$\therefore A \subset B \Rightarrow A-B=\varnothing$

Let $A-B=\varnothing$

To show: $A \subset B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$

$\therefore A-B=\varnothing \Rightarrow A \subset B$

$\therefore(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A \cup B=B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$

$\therefore A-B=\varnothing \Rightarrow A \subset B$

$\therefore(i) \Leftrightarrow(i i)$

Let $A \subset B$

To show: $A \cup B=B$

Clearly, $B \subset A \cup B$

Let $x \in A \cup B$

$\Rightarrow x \in A$ or $x \in B$

Case $I:$ $x \in A$

$\Rightarrow x \in B$           $[\because A \subset B]$

$\therefore A \cup B \subset B$

Case $II:$ $x \in B$

Then, $A \cup B=B$

Conversely, let $A \cup B=B$

Let $x \in A$

$\Rightarrow x \in A \cup B \quad[\because A \subset A \cup B]$

$\Rightarrow x \in B \quad[\because A \cup B=B]$

$\therefore A \subset B$

Hence, $(i) \Leftrightarrow(\text {iii})$

Now, we have to show that $(i) \Leftrightarrow(i v)$

Let $A \subset B$

Clearly $A \cap B \subset A$

Let $x \in A$

We have to show that $x \in A \cap B$

As $A \subset B, x \in B$

$\therefore x \in A \cap B$

$\therefore A \subset A \cap B$

Hence, $A=A \cap B$

Conversely, suppose $A \cap B=A$

Let $x \in A$

$\Rightarrow x \in A \cap B$

$\Rightarrow x \in A$ and $x \in B$

$\Rightarrow x \in B$

$\therefore A \subset B$

Hence, $(i) \Leftrightarrow(i v)$

Similar Questions

मान लीजिए कि $A =\{1,2,3,4,5,6,7,8,9,10\}$ और $B =\{2,3,5,7\}$ $A \cap B$ ज्ञात कीजिए और इस प्रकार दिखाइए कि $A \cap B = B$.

$X =\{1,3,5\}, \quad Y =\{1,2,3\}$ समुच्चय युग्म का सर्वनिष्ठ समुच्चय ज्ञात कीजिए।

यदि $A \subseteq B$, तब $A \cap B$ बराबर है

यदि समुच्चय $A$ और $B$ निम्न प्रकार से परिभाषित हैं

$ A = \{ (x,\,y):y = \frac{1}{x},\,0 \ne x \in R\} $

$B = \{ (x,\,y):y =  - x,\,\,x \in R\} $, तब

यदि $A =\{x: x$ एक प्राकृत संख्या है $\},B =\{x: x$ एक सम प्राकृत संख्या है $\}$ $C =\{x: x$ एक विषम प्राकृत संख्या है $\}$ $D =\{x: x$ एक अभाज्य संख्या है $\}$ तो निम्नलिखित ज्ञात कीजिए

$B \cap C$