Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(-1)=1=f(1), \,f$ is not oneone. Also, the element $-2$ in the co-domain $R$ is not image of any element $x$ in the domain $R$ (Why ?). Therefore $f$ is not onto.

864-s40

Similar Questions

The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is 

Let $\mathrm{f}: N \rightarrow N$ be a function such that $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ for every $\mathrm{m}, \mathrm{n} \in N$. If $\mathrm{f}(6)=18$ then $\mathrm{f}(2) \cdot \mathrm{f}(3)$ is equal to :

  • [JEE MAIN 2021]

The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is

  • [AIEEE 2004]

If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1/x) = f(x) + f(1/x)$ and $f(2) = 9$ then :

If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$