The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is
Let $\mathrm{f}: N \rightarrow N$ be a function such that $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ for every $\mathrm{m}, \mathrm{n} \in N$. If $\mathrm{f}(6)=18$ then $\mathrm{f}(2) \cdot \mathrm{f}(3)$ is equal to :
The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is
If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1/x) = f(x) + f(1/x)$ and $f(2) = 9$ then :
If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$