સાબિત કરો કે $f: R \rightarrow R$, $f(x)=x^{2},$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(-1)=1=f(1), \,f$ is not oneone. Also, the element $-2$ in the co-domain $R$ is not image of any element $x$ in the domain $R$ (Why ?). Therefore $f$ is not onto.

864-s40

Similar Questions

વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .

વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .

  • [JEE MAIN 2013]

જો $A= \{1, 2, 3, 4\}$ અને સંબંધ $R : A \to A$ ; $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$  આપેલ હોય તો આપેલ પૈકી સત્ય વિધાન મેળવો.

  • [JEE MAIN 2013]

સમિકરણ ${x^{1 + {{\log }_{10}}x}} = 100000x$ ના ઉકેલોોનો ગુુુણાકાર ....... થાય.

$f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$ નો પ્રદેશગણ મેળવો.

જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.

  • [IIT 2001]