Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f : R \rightarrow R$ is given as $f ( x )= x ^{3}$

For one - one

Suppose $f(x)=f(y),$ where $x, \,y \in R$

$\Rightarrow x^{3}=y^{3}$       ........... $(1)$

Now, we need to show that $x=y$

Suppose $x \neq y,$ their cubes will also not be equal.

$\Rightarrow x^{3} \neq y^{3}$

However, this will be a contradiction to $(1)$.

$\therefore  $  $x = y$ Hence, $f$ is injective.

Similar Questions

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is

If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is

  • [IIT 1990]

The period of function

$f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ is

Let $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ and $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f:A \to B$ which are onto, if there exist exactly three elements $x$ in $A$ such that $f(x) = {y_2}$ , is equal to

The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is

  • [JEE MAIN 2023]