સ્પ્રિંગના લીધે થતાં દોલનો સ.આ.દોલનો છે તેમ બતાવો અને આવર્તકાળનું સૂત્ર મેળવો.
આકૃતિમાં દર્શાવ્યા અનુસાર દઢ દીવાલ સાથે સ્પ્રિંગના એક છેડાને અને બીજા મુક્ત છેડા સાથે $m$ દળનો બલોક જોડેલો છે.
આ બ્લોક અને સ્પ્રિંગના તંત્રને ઘર્ષણરહિત સપાટી પર મૂક્વામાં આવેલ છે.
બ્લોકને એક બાજુએ ખેંચીને છોડી દેવામાં આવે, તો બ્લોક તેનાં મધ્યમાન સ્થાનને અનુલક્ષીને આગળ-પાછળ ગતિ કરે છે.
$x=0$એ સ્પ્રિગ સંતુલનમાં હોય ત્યારની બ્લૉકના કેન્દ્રની સ્થિતિ દર્શાવે છે.
$- A$ અને $+A$ વડે દર્શાવેલ સ્થાનો મધ્યમાન સ્થાનેથી અનુક્રમે ડાબી અને જમણી તરફના મહત્તમ સ્થાનાંતરો દર્શાવે છે.
સ્પ્રિગ માટે રોબર્ટ હૂક આપેલો નિયમ "સ્પ્રિગને વિરૂપિત કરવામાં આવે ત્યારે તેમાં પુનઃસ્થાપક બળ લાગે છે. આ
પુનઃસ્થાપકબળનું મૂલ્ય વિરૂપણ અથવા સ્થાનાંતરના સમપ્રમાણમાં હોય છે અને તેની દિશા સ્થાનાંતરની વિરુદ્ધમાં હોય છે."
ધારો કે $t$ સમયે મધ્યમાન સ્થાનેથી બ્લોકનું સ્થાનાંતર $x$ હોય, તો બ્લોકમાં ઉદ્ભવતું પુનઃસ્થાપક બળ, $F (x)=-k x... (1)$
જ્યાં $k$ સમપ્રમાણતાનો અચળાંક છે અને તેને સ્પ્રિગ અચળાંક અથવા સ્પ્રિગનો બળ અચળાંક કહે છે.
સમીકરણ $(1)$ એ સ.આ.ગ. કરતાં કણ પર લાગતાં બળના નિયમ જેવું છે. એટલે કे, સ્પ્રિગ સાથે જોડેલ બ્લૉક પરનું બળ સ્થાનાંતરના સમપ્રમાણમાં અને સ્થાનાંતરની વિરુધ્ધમાં હોય છે જे સ.આ.ગ. ની આવશ્યક શરત છે તેથી આ બ્લોકની ગતિ સ.આ.ગ. છે.
પણ $F(x)=ma(x)$ લખતાં,
$\therefore m a(x)=k x$
$\therefore m\left(-\omega^{2} x\right)=-k x\left[\because a(x)=-\omega^{2} x\right]$
$\therefore \omega=\sqrt{\frac{k}{m}}$
$\therefore \frac{2 \pi}{ T }=\sqrt{\frac{k}{m}}$
$\therefore T =2 \pi \sqrt{\frac{m}{k}}$
કોઈ એક સ્પ્રિંગ સાથે જોડાયેલ દ્રવ્યમાન સમક્ષિતિજ સમતલમાં કોણીય વેગ $\omega $ સાથે ઘર્ષણ કે અવમંદનરહિત દોલનો માટે મુક્ત છે. તેને $t = 0 $ એ, $x_0$ અંતર સુધી ખેંચવામાં આવે છે અને કેન્દ્ર તરફ $v_0$ , વેગથી ધક્કો મારવામાં આવે છે. પ્રાચલો , $\omega ,x-0$ અને $v_0$ નાં પદમાં પરિણામી દોલનોના કંપવિસ્તાર નક્કી કરો. (સૂચન : સમીકરણ $x = a\, cos\,(\omega t + \theta )$ સાથે શરૂઆત કરો અને નોંધ કરો કે, પ્રારંભિક વેગ ઋણ છે.)
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m$ દ્રવ્યમાનને બે દોરી વચ્ચે લગાવેલ છે. બે સ્પ્રિંગોના સ્પ્રિંગ અચળાંક $K_1$ અને $K _2$ છે. ઘર્ષણ મુકત સપાટી પર $m$ દળના દોલનનો આવર્તકાળ છે.
આકૃતિ $(A)$ માં ‘$2\,m$’ દળને ' $m$ ' દળ ઉપર જડવામાં આવ્યો છે. $m$ દળ $k$ જેટલો સ્પ્રિંગ અચળાંક ઘરાવતી સ્પ્રિંગો સાથે જોડવામાં આવેલ છે. આકૃતિ $(B)$ માં ‘ $m$ ' દળને ' $k$ ' અને ‘ $2 k$ ' સ્ત્રિંગ અચળાંકો ઘરાવતી બે સ્પ્રિંગો સાથે જ્રેડવામાં આવેલ છે. જે $(A)$ માં દળ ' $m$ ' ને અને $(B)$ માં દળ ' $m$ ' ને ' $x$ ' અંતરે ખસેડવામાં આવે તો, $(A)$ અને $(B)$ ને અનુરૂપ આવર્તકાળ $T _1$ અને $T _2........$ સમીકરણને અનુસરશે.
સ્પ્રિંગનો બળ અચળાંક એટલે શું ? તેનો એકમ અને પારિમાણિક સૂત્ર લખો.
લગભગ દળવિહિન $12.5 \,Nm ^{-1}$ જેટલો સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિગ સાથે બે દળ $m_1=1$ કિગ્રા અને $m_2=5$ કિગ્રા સાથે જ લટકાવવામાં આવેલ છે. જ્યારે તે બંને દળ મધ્યબિંદુુએ સ્થિર હોય ત્યારે તંત્રમાં ફેરફારના થાય તેમ $m_1$ દૂર કરવામાં આવે છે, હવે પછીના દોલનો માટેનો કંપવિસ્તાર ........ $cm$ હેશે.