Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively. It is known that the $k^{th}$ term of an $A.P.$ is given by
$a_{k}=a+(k-1) d$
$\therefore a_{m+n}=a+(m+n-1) d$
$a_{m-n}=a+(m-n-1) d$
$a_{m}=a+(m-1) d$
$\therefore a_{m+n}+a_{m-n}=a+(m+n-1) d+a+(m-n-1) d$
$=2 a+(m+n-1+m-n-1) d$
$=2 a+(2 m-2) d$
$=2 a+2(m-1) d$
$=2[a+(m-1) d]$
$=2 a_{m}$
Thus, the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?
The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit