Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively. It is known that the $k^{th}$ term of an $A.P.$ is given by

$a_{k}=a+(k-1) d$

$\therefore a_{m+n}=a+(m+n-1) d$

$a_{m-n}=a+(m-n-1) d$

$a_{m}=a+(m-1) d$

$\therefore a_{m+n}+a_{m-n}=a+(m+n-1) d+a+(m-n-1) d$

$=2 a+(m+n-1+m-n-1) d$

$=2 a+(2 m-2) d$

$=2 a+2(m-1) d$

$=2[a+(m-1) d]$

$=2 a_{m}$

Thus, the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.

Similar Questions

Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are

The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is

  • [IIT 1980]

Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$

If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then