આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...

822-734

  • [JEE MAIN 2015]
  • A

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • B

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, \ne \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • C

    $\begin{array}{l} {\sigma _1}\, = \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • D

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, \ne \,0\\ {\sigma _2}\, \ne \,0,\,\,{Q_2}\, \ne \,0 \end{array}$

Similar Questions

ગોસના નિયમના ઉપયોગો જણાવો.

$R$ ત્રિજ્યાનો અવાહક ધન ગોળો સમાન રીતે વિદ્યુતભારીત થયેલો છે. તેના કેન્દ્રથી $r$ અંતરે આવેલ ગોળાને લીધે વિદ્યુતક્ષેત્રનું મૂલ્ય ........ છે.

$(1)\, r$ ના વધારા સાથે વધે છે $r < R \,$

$(2)\, r$ ના વધારા સાથે ઘટશે $0 < r <$ $\infty$

$(3)\, r$ ના વધારા સાથે ઘટશે $R < r < \infty \,$

$(4)\, r = R$ આગળ તે સતત છે.

બે $+\sigma$ પૃષ્ઠ વિજભાર ઘનતા ધરાવતા અનંત સમતલને એક બીજા સાથે $30^{\circ} $ ના ખૂણે મૂકવામાં આવે છે, તો તેમની વચ્ચેના ક્ષેત્રમાં વિદ્યુતક્ષેત્ર કેટલું થાય?

  • [JEE MAIN 2020]

સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.

$10\ cm$ ત્રિજયા ધરાવતા ગોળાથી $20\ cm$ અંતરે વિદ્યુતક્ષેત્ર $100\ V/m$ છે.તો કેન્દ્રથી $3\ cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?