Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, \ne \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, = \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, \ne \,0\\
{\sigma _2}\, \ne \,0,\,\,{Q_2}\, \ne \,0
\end{array}$
Consider a uniform spherical charge distribution of radius $R_1$ centred at the origin $O$. In this distribution, a spherical cavity of radius $R_2$, centred at $P$ with distance $O P=a=R_1-R_2$ (see figure) is made. If the electric field inside the cavity at position $\overrightarrow{ r }$ is $\overrightarrow{ E }(\overrightarrow{ r })$, then the correct statement$(s)$ is(are) $Image$
Let a total charge $2Q$ be distributed in a sphere of radius $R$, with the charge density given by $\rho(r) = kr$, where $r$ is the distance from the centre. Two charges $A$ and $B$, of $-Q$ each, are placed on diametrically opposite points, at equal distance, $a$, from the centre. If $A$ and $B$ do not experience any force, then
A solid metal sphere of radius $R$ having charge $q$ is enclosed inside the concentric spherical shell of inner radius $a$ and outer radius $b$ as shown in figure. The approximate variation electric field $\overrightarrow{{E}}$ as a function of distance $r$ from centre $O$ is given by
There is a solid sphere of radius $‘R’$ having uniformly distributed charge throughout it. What is the relation between electric field $‘E’$ and distance $‘r’$ from the centre ( $r$ is less than R ) ?
An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?