छः आवेशों $+ q - q + q .- q$, $+ q$ एवं $- q$ को $d$ भुजा वाले एक षटभुज के कौनो पर चित्रानुसार लगाया गया है। अनन्त से आवेश $q _0$ को षटभुज के केन्द्र तक लाने में किया गया कार्य है :
( $\varepsilon_0$ - मुक्त आकाश का परावैद्युतांक)
$0$
$\frac{- q ^2}{4 \pi \varepsilon_0 d }$
$\frac{- q ^2}{4 \pi \varepsilon_0 d }\left(3-\frac{1}{\sqrt{2}}\right)$
$\frac{-q^2}{4 \pi \varepsilon_0 d }\left(6-\frac{1}{\sqrt{2}}\right)$
एक आवेश $( - \,q)$ तथा अन्य आवेश $( + \,Q)$ क्रमश: दो बिन्दुओं $A$ व $B$ पर रखे हैं। आवेश $( + \,Q)$ को $B$ पर स्थिर रखते हुये, $A$ के आवेश $( - \,q)$ को बिन्दु $C$ तक इस प्रकार चलाते हैं कि $l$ भुजा का समबाहु त्रिभुज $ABC$ बन जाये। आवेश $( - \,q)$ को चलाने में किया गया कुल कार्य है
$R$ त्रिज्या के एक गोलीय कवच के पृष्ठ पर कुल आवेश $+Q$ एकसमान रूप से फैला हुआ है। गोलीय कवच का केंद्र मूल बिन्दु $( x =0)$ पर स्थित है। बहुत दूरी पर स्थित दो बिन्दु आवेशों $+q$ तथा $-q$ को लाकर एक के बाद एक $x=-a / 2$ तथा $x=+a / 2( < R)$ Work done = ......
$m$ द्रव्यमान के एक बिन्दु आवेश $q$ को $\ell$ लम्बाई की एक डोरी द्वारा ऊर्ध्वाधर रूप से लटकाया जाता है। अब द्विध्रुव आघूर्ण $\overrightarrow{ p }$ के एक बिन्दु द्विध्रुव को अनन्त से $q$ की ओर इस प्रकार लाया जाता है कि आवेश दूर गति करता है। द्विध्रुव की दिशा, कोणों तथा दूरियों सहित निकाय की अन्तिम साम्य स्थिति नीचे चित्र में दर्शायी गई है। यदि द्विध्रुव को इस स्थिति तक लाने में किया गया कार्य $N \times( mgh )$ है, जहाँ $g$ गुरूत्वीय त्वरण है, जब $N$ का मान. . . . . . . है। (ध्यान दीजिये की बिन्दु द्रव्यमान को साम्यावस्था में बनाए रखते हुए तीन समतलीय बलों के लिए, $\frac{ F }{\sin \theta}$ सभी बलों के लिए समान है, जहाँ $F$ कोई एक बल है तथा $\theta$ अन्य दो बलों के मध्य कोण है।)
दो बिन्दु आवेशों $100\,\mu \,C$ और $5\,\mu \,C$ को क्रमश: $A$ और $B$ बिन्दुओं पर रखा गया है, जहाँ $AB = 40\,$ सेमी है। बाह्य बल द्वारा आवेश $5\,\mu \,C$ को $B$ से $C$ तक विस्थापित करने में किया गया कार्य होगा (जहाँ $BC = 30\,$ सेमी, कोण $ABC = \frac{\pi }{2}$ तथा $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}$ न्यूटन-मी$^2$/कूलॉम$^{2}$)......$J$
यदि $H _{2}$ अणु के दो में से एक इलेक्ट्रॉन को हटा दिया जाए तो हमें हाइड्रोजन आणविक आयन $\left( H _{2}^{+}\right)$ प्राप्त होगा। $\left( H _{2}^{+}\right)$ की निम्नतम अवस्था ( ground state) में दो प्रोटॉन के बीच दूरी लगभग $1.5\, \AA$ है और इलेक्ट्रॉन प्रत्येक प्रोटॉन से लगभग $1\, \AA$ की दूरी पर है। निकाय की स्थितिज ऊर्जा ज्ञात कीजिए। स्थितिज ऊर्जा की शून्य स्थिति के चयन का उल्लेख कीजिए।