Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ is
$x \in \left[ {4,9} \right]$
$x \in \left[ {3,8} \right]$
$x \in \left[ {5,10} \right]$
$x \in \left[ {4,7} \right]$
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is
If $\alpha , \beta $ are the roots of the equation $x^2 - 2x + 4 = 0$ , then the value of $\alpha ^n +\beta ^n$ is
Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?
$I$. $4$ divides $x$ or $4$ divides $y$.
$II$. $3$ divides $x+y$ or $3$ divides $x-y$.
$III$. $5$ divides $z\left(x^2-y^2\right)$.
Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is
The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is