Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ is
$x \in \left[ {4,9} \right]$
$x \in \left[ {3,8} \right]$
$x \in \left[ {5,10} \right]$
$x \in \left[ {4,7} \right]$
If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are
$\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$
Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are
The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is