solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
$R$
$\left[ { - 1\,,\,2} \right)\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left[ { - 1\,,\,1} \right]\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[ - 1,\,1]\,\, \cup \,\,(2,\infty )$
The graph of $y = f(x)$ is shown then number of solutions of the equation $f(f(x)) =2$ is
The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is
Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
Let $P(x)$ be a polynomial with real coefficients such that $P\left(\sin ^2 x\right)=P\left(\cos ^2 x\right)$ for all $x \in[0, \pi / 2)$. Consider the following statements:
$I.$ $P(x)$ is an even function.
$II.$ $P(x)$ can be expressed as a polynomial in $(2 x-1)^2$
$III.$ $P(x)$ is a polynomial of even degree.
Then,
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to: