If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is
$3$
$4$
$5$
$6$
If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1/x) = f(x) + f(1/x)$ and $f(2) = 9$ then :
Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is
Which of the following function is surjective but not injective
Let $2{\sin ^2}x + 3\sin x - 2 > 0$ and ${x^2} - x - 2 < 0$ ($x$ is measured in radians). Then $x$ lies in the interval
The domain of $f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ is (where $[.]$ denotes $G.I.F.$)