- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
The number of all possible triplets $(a_1 , a_2 , a_3)$ such that $a_1+ a_2 \,cos \, 2x + a_3 \, sin^2 x = 0$ for all $x$ is
A
$0$
B
$1$
C
$3$
D
infinite
Solution
we can write $\sin ^{2} x=\frac{(1-\cos 2 x)}{2}$
$a_{1}+\frac{a_{3}}{2}=0$
$a_{2}-\frac{a_{3}}{2}=0$
These two equations can have infinite roots.
Standard 11
Mathematics