Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$

or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$

Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$

or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Similar Questions

The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals

  • [KVPY 2013]

Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

The equation $3\cos x + 4\sin x = 6$ has

Number of solutions of equation $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ in $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$  is

(where $sgn(.)$ denotes signum function) -