Trigonometrical Equations
easy

Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

Option A
Option B
Option C
Option D

Solution

We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$

or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$

Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$

or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.