$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ को हल कीजिए
We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$
or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$
Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$
or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
यदि $0 \leq x < \frac{\pi}{2}$ हे, तो $x$ के उन मानों की संख्या जिनके लिए $\sin x-\sin 2 x+\sin 3 x=0$ है
यदि $(1 + \tan \theta )(1 + \tan \phi ) = 2$, तब $\theta + \phi =$ ......$^o$
मान लीजिये कि $\alpha$ चर वास्तविक संख्या है जो $\pi / 2$ का पूर्णांकीय गुणित $(integral\,multiple)$ नहीं है। दिये गए तत्समक $(equality)$ $\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$ को संत्ष्ट करने वाली कितनी वास्तविक संख्याएँ $\lambda$ हैं?
माना $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ तथा $\beta=\sum_{\mathrm{x} \in \mathrm{S}} \tan ^2\left(\frac{\mathrm{x}}{3}\right)$, तो $\frac{1}{6}(\beta-14)^2$ बराबर है
यदि $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ तो $\theta = $