$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ को हल कीजिए

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$

or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$

Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$

or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Similar Questions

$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं

यदि ${\sin ^2}\theta  - 2\cos \theta  + \frac{1}{4} = 0,$ तो $\theta $ का व्यापक मान है

यदि $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, तो $\theta  $ का व्यापक मान है

$\tan \frac{\pi}{8}$ का मान ज्ञात कीजिए।

यदि $0 \le x \le \pi $ तब ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$ है, तो $x$ का मान है

  • [JEE MAIN 2021]