If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta,$ then $\lambda$ lies in the interval
$\left[-\frac{3}{2},-\frac{5}{4}\right]$
$\left(-\frac{1}{2},-\frac{1}{4}\right]$
$\left(-\frac{5}{4},-1\right)$
$\left[-1,-\frac{1}{2}\right]$
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are
If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is
Number of solutions of equation $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ in $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$ is
(where $sgn(.)$ denotes signum function) -
Let $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$. Then the number of elements in the set $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ is $...$
$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to