If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta,$ then $\lambda$ lies in the interval
$\left[-\frac{3}{2},-\frac{5}{4}\right]$
$\left(-\frac{1}{2},-\frac{1}{4}\right]$
$\left(-\frac{5}{4},-1\right)$
$\left[-1,-\frac{1}{2}\right]$
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
The smallest positive values of $x$ and $y$ which satisfy $\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ are
The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ is