Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The equation can be written as

$\sin 6 x+\sin 2 x-\sin 4 x=0$

or $2 \sin 4 x \cos 2 x-\sin 4 x=0$

i.e. $\quad \sin 4 x(2 \cos 2 x-1)=0$

Therefore $\sin 4 x=0 \quad$ or $\cos 2 x=\frac{1}{2}$

i.e. $\sin 4 x=0$ or $\cos 2 x=\cos \frac{\pi}{3}$

Hence $\quad 4 x=n \pi$ or $2 x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

i.e. $x=\frac{n \pi}{4}$ or $x=n \pi \pm \frac{\pi}{6},$ where $n \in Z$

Similar Questions

$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to

For $0<\theta<\frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^6 \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}$ is(are)

$(A)$ $\frac{\pi}{4}$ $(B)$ $\frac{\pi}{6}$ $(C)$ $\frac{\pi}{12}$ $(D)$ $\frac{5 \pi}{12}$

  • [IIT 2009]

Find the general solution of the equation $\cos 4 x=\cos 2 x$

The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to

  • [JEE MAIN 2022]

Let $f(x) = \cos \sqrt {x,} $ then which of the following is true