State and explain the characteristics of vector product of two vectors.
$(1)$ $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
The vector product of two vector is not commutative but $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ is opposite to each other
However $|\vec{a} \times \vec{b}|=|\vec{b} \times \vec{a}|$
$(2)$ Scalar product act behave like reflection (taking image in mirror) $x \rightarrow-x, y \rightarrow-y$ and $z \rightarrow$ $-z$.
In reflection occurrence all components changes sign mean positive vector becomes negative.
So, $\vec{a} \times \vec{b} \rightarrow(-\vec{a}) \times(-\vec{b})=\vec{a} \times \vec{b}$
Hence, in reflection sign is not change in resultant.
$(3)$ Vector product obeys distributive law :
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
$(4)$ For two non-zero vectors $\vec{a} \times \vec{a}=\overrightarrow{0}$
where $\overrightarrow{0}$ is vector of zero modulus
Here $\vec{a} \times \vec{a} =(a)(a) \sin 0^{\circ} \hat{n}$ $=\overrightarrow{0}$
( $\because$ Angle between $\vec{a}$ and $\vec{a}$ is $0^{\circ}$ )
Hence, condition of parallel or anti parallel of two non-zero vectors is that its vector product should be zero.
$(5)$ If two non-zero vector is perpendicular, then
$\vec{a} \times \vec{b} =a b \sin 90^{\circ} \hat{n}$
$=a b \hat{n}$
where $\hat{n}$ is unit vector in direction of $\vec{a} \times \vec{b}$.
$(6)$ Vector product for unit vector of cartesian co-ordinate system.
If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $n$ is . . . . . . ..
If $\vec A$ and $\vec B$ are perpendicular vectors and vector $\vec A = 5\hat i + 7\hat j - 3\hat k$ and $\vec B = 2\hat i + 2\hat j - a\hat k.$ The value of $a$ is
If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ then projection of $\overrightarrow A $ on $\overrightarrow B $ will be