વિધાન $1$ : જો $A$ અને $B$ બે ગણ છે કે જે અનુક્રમે $p$ અને $q$ ઘટકો ધરાવે છે કે જ્યાં $q > p$ તો $A$ થી $B$ પરના વિધેય ની સંખ્યા $q^p$ થાય .
વિધાન $2$ : $q$ વસ્તુમાંથી $p$ ભિન્ન વસ્તુ પસંદગી ${}^q{C_p}$ થાય.
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે.
જો વિધેય $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ નો પ્રદેશ $[\alpha, \beta) U (\gamma, \delta]$ હોય, તો $|3 \alpha+10(\beta+\gamma)+21 \delta|=..........$
વિધેય $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ નો વિસ્તાર ......... છે.
જો વિધેય $g(x)$ એ $[-1, 1]$ મા વ્યાખિયાયિત છે અને સમબાજુ ત્રિકોણના બે શિરોબિંદુઓ $(0, 0)$ અને $(x, g(x))$ તથા તેનુ ક્ષેત્રફળ $\frac{\sqrt 3}{4}$ હોય તો $g(x)$ =
અહી $f: R \rightarrow R$ એ સતત વિધેય છે કે જેથી દરેક $x \in R$ માટે $f\left(x^2\right)=f\left(x^3\right)$ થાય. તો આપેલ વિધાન જુઓ.
$I.$ $f$ એ અયુગ્મ વિધેય છે.
$II.$ $f$ એ યુગ્મ વિધેય છે.
$III$. $f$ એ દરેક બિંદુ આગળ વિકલનીય છે તો . .. .
વિઘેય $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} $ નો પ્રદેશ ........ છે.