Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to
$( P \vee R ) \Rightarrow Q$
$( P \Rightarrow R ) \wedge( Q \Rightarrow R )$
$( P \Rightarrow R ) \vee( Q \Rightarrow R )$
$(P \wedge R) \Rightarrow Q$
Consider the following statements:
$P :$ Ramu is intelligent
$Q $: Ramu is rich
$R:$ Ramu is not honest
The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.
Which of the following is always true
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to