Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
$L.H.S.$ $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$
$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$
$=\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x}$
$[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right),$
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]$
$=\frac{2 \cos 3 x \cos +\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$
$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$
$\cot 3 x=R .H .S.$
If $\alpha $ and $\beta $ are solutions of $sin^2\,x + a\, sin\, x + b = 0$ as well that of $cos^2\,x + c\, cos\, x + d = 0$ , then $sin\,(\alpha + \beta )$ is equal to
If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $
$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$
Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to
If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be