The value of $\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ is

  • A

    $\frac{n}{2}\log \left( {\frac{{{a^n}}}{{{b^n}}}} \right)$

  • B

    $\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^n}}}} \right)$

  • C

    $\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n - 1}}}}} \right)$

  • D

    $\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n + 1}}}}} \right)$

Similar Questions

Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................

  • [JEE MAIN 2024]

The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is

If $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ be consecutive terms of an $A.P.$, then ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ will be in

In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -

Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to

  • [JEE MAIN 2019]