- Home
- Standard 11
- Mathematics
The value of $\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ is
$\frac{n}{2}\log \left( {\frac{{{a^n}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^n}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n - 1}}}}} \right)$
$\frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n + 1}}}}} \right)$
Solution
(c) The given series is
$\log a + \log \left( {\frac{{{a^2}}}{b}} \right) + \log \left( {\frac{{{a^3}}}{{{b^2}}}} \right) + \log \left( {\frac{{{a^4}}}{{{b^3}}}} \right) + …… + \log \left( {\frac{{{a^n}}}{{{b^{n – 1}}}}} \right)$
This is an $A.P.$ with first term $\log a$
and the common difference $\log \left( {\frac{{{a^2}}}{b}} \right) – \log a = \log \left( {\frac{a}{b}} \right)$
Therefore the sum of $n$ terms is
$\frac{n}{2}\left[ {\log a + \log \left( {\frac{{{a^n}}}{{{b^{n – 1}}}}} \right)} \right] = \frac{n}{2}\log \left( {\frac{{{a^{n + 1}}}}{{{b^{n – 1}}}}} \right)$.
Trick : Check for $n = 1,\;2$.