ધારોકે $a_{1}, a_{2,}, \ldots \ldots, a_{ n }, \ldots \ldots . .$ એ પ્રાકૃતિક સંખ્યાઆની એક સમાંતર શ્રેણી છે. જો આ શ્રેણીના પ્રથમ પાંચ પદોના સરવાળા અને પ્રથમ નવ પદોના સરવાળાનો ગુણોત્તર $5: 17$ હોય અને $110 < a_{15} < 120$ હોય, તો આ શ્રેણીના પ્રથમ દસ પદોનો સરવાળો ......... છે.
$290$
$380$
$460$
$510$
જેના પ્રથમ પદો $1,2,3,..,10$ હોય અને સામાન્ય તફાવત $1,3,5, \ldots, 19$ હોય તેવી $10$ સમાંતર શ્રેણીઓના $12$ પદો સુધીનો સરવાળો અનુક્રમે ધારોકે $s_1, s_2, s_3, \ldots, s_{10}$ છે.તો $\sum \limits_{i=1}^{10} s_i=..........$
ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?
જો સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $Pn + Qn^2$ હોય જ્યાં $P,\,Q$ અચળ, હોય તો તેમનો સામાન્ય તફાવત કેટલો થાય ?
ધારો કે $S_n$ એ, સમાંતર શ્રેણી $3,7,11, \ldots . . .$. નાં $n$ પદોનો સરવાળો છે. જો $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^n S_k\right)<42$ હોય,તો $n=$___________.
એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.