Suppose that the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{5}=1$ are $\left(f_1, 0\right)$ and $\left(f_2, 0\right)$ where $f_1>0$ and $f_2<0$. Let $P _1$ and $P _2$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_1, 0\right)$ and $\left(2 f_2, 0\right)$, respectively. Let $T_1$ be a tangent to $P_1$ which passes through $\left(2 f_2, 0\right)$ and $T_2$ be a tangent to $P_2$ which passes through $\left(f_1, 0\right)$. The $m_1$ is the slope of $T_1$ and $m_2$ is the slope of $T_2$, then the value of $\left(\frac{1}{m^2}+m_2^2\right)$ is
$1$
$2$
$3$
$4$
Let $F_1\left(x_1, 0\right)$ and $F_2\left(x_2, 0\right)$, for $x_1<0$ and $x_2>0$, be the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{8}=1$. Suppose a parabola having vertex at the origin and focus at $F_2$ intersects the ellipse at point $M$ in the first quadrant and at point $N$ in the fourth quadrant.
($1$)The orthocentre of the triangle $F_1 M N$ is
($A$) $\left(-\frac{9}{10}, 0\right)$ ($B$) $\left(\frac{2}{3}, 0\right)$ ($C$) $\left(\frac{9}{10}, 0\right)$ ($D$) $\left(\frac{2}{3}, \sqrt{6}\right)$
($2$) If the tangents to the ellipse at $M$ and $N$ meet at $R$ and the normal to the parabola at $M$ meets the $x$-axis at $Q$, then the ratio of area of the triangle $M Q R$ to area of the quadrilateral $M F_{\mathrm{I}} N F_2$ is
($A$) $3: 4$ ($B$) $4: 5$ ($C$) $5: 8$ ($D$) $2: 3$
Givan the answer qestion ($1$) and ($2$)
Find the equation for the ellipse that satisfies the given conditions: Length of minor axis $16$ foci $(0,\,±6)$
An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $ e_1, e_2 $ be their eccentricities respectively, then $e_1^{ - 2} + e_2^{ - 2}$ equals
If the normal at the point $P(\theta )$ to the ellipse $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ intersects it again at the point $Q(2\theta )$, then $\cos \theta $ is equal to
The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ meet the $x-$ axis at $Q$ and $R,$ respectively. Then the area(in sq. units) of the triangle $PQR$ is