Suppose that the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{5}=1$ are $\left(f_1, 0\right)$ and $\left(f_2, 0\right)$ where $f_1>0$ and $f_2<0$. Let $P _1$ and $P _2$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_1, 0\right)$ and $\left(2 f_2, 0\right)$, respectively. Let $T_1$ be a tangent to $P_1$ which passes through $\left(2 f_2, 0\right)$ and $T_2$ be a tangent to $P_2$ which passes through $\left(f_1, 0\right)$. The $m_1$ is the slope of $T_1$ and $m_2$ is the slope of $T_2$, then the value of $\left(\frac{1}{m^2}+m_2^2\right)$ is
$1$
$2$
$3$
$4$
An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is
Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -
Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$.
If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is