माना कि दीर्घ वृत्त $\frac{x^2}{9}+\frac{y^2}{5}=1$ की नाभियाँ (foci) ( $\left.f_1, 0\right)$ और $\left(f_2, 0\right)$ है, जहाँ $f_1>0$ और $f_2<0$ है। माना कि $P_1$ एवं $P_2$ दो परवलय (parabola) है जिनकी नाभियाँ क्रमशः $\left(f_1, 0\right)$ तथा $\left(2 f_2, 0\right)$ हैं तथा दोनों के शीर्प (vertex) $(0,0)$ है। माना कि $P_1$ की स्पर्श रेखा $T_1$ बिन्दु $\left(2 f_2, 0\right)$ से, एवं $P_2$ की स्पर्श रेखा $T_2$ विन्दु $\left(f_1, 0\right)$ से गुजरती हैं। यदि $T_1$ की प्रवणता (slope) $m_1$ हो, हो और $T _2$ की प्रवणता $m _2$ हो, तव $\left(\frac{1}{ m _1^2}+ m _2^2\right)$ का मान है

  • [IIT 2015]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा   

माना परवलय $y ^{2}=4 x -20$ के बिन्दु $(6,2)$ पर स्पर्श रेखा $L$ है। यदि $L$, दीर्घवत्त $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ की भी एक स्पर्श रेखा है, तो $b$ का मान बराबर है

  • [JEE MAIN 2021]

दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ है

दो समुच्चय $A$ तथा $B$ निम्न प्रकार के हैं

$A=\{(a, b) \in R \times R:|a-5|< 1$ तथा $|b-5|< 1\}$

$B=\left\{(a, b) \in R \times R: 4(a-6)^{2}+9(b-5)^{2} \leq 36\right\}$ तो

  • [JEE MAIN 2018]

एक दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ और एक नाभि बिन्दु $P\left( {\frac{1}{2},\;1} \right)$ है। इसकी एक नियता वृत्त ${x^2} + {y^2} = 1$ और अतिपरवलय ${x^2} - {y^2} = 1$ की बिन्दु $P$ के निकट स्थित उभयनिष्ठ स्पर्श रेखा है। दीर्घवृत्त का मानक रूप में समीकरण होगा

  • [IIT 1996]