दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की लम्बवत् स्पर्शियों के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा
${x^2} + {y^2} = 9$
${x^2} + {y^2} = 4$
${x^2} + {y^2} = 13$
${x^2} + {y^2} = 5$
दीर्घवृत्त $25{x^2} + 16{y^2} = 100$ की उत्केन्द्रता है
किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
रेखा $12 x \cos \theta+5 y \sin \theta=60$ निम्न में से किस वक्र की स्पर्श रेखा है?
एक दीर्घवृत्त के दीर्घ तथा लघु अक्षों की लम्बाइयाँ क्रमश: $10$ तथा $8$ हैं और उसका दीर्घ अक्ष $y$ - अक्ष है। दीर्घवृत्त के केन्द्र को मूलबिन्दु मानते हुये दीर्घवृत्त का समीकरण है