दीर्घवृत्त $3{x^2} + 4{y^2} = 12$ के लिये नाभिलम्ब की लम्बार्इ है
$\frac{3}{2}$
$3$
$\frac{8}{3}$
$\sqrt {\frac{3}{2}} $
यदि एक दीर्घवृत जिसका केंद्र मूलबिन्दु पर है, के दीर्घ अक्ष तथा लघु अक्ष की लंबाइयों का अंतर $10$ है तथा एक नाभिकेंद्र $(0,5 \sqrt{3})$ पर है, तो इसके नाभिलंब की लंबाई है
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ की जीवा का समीकरण, जो कि बिन्दु $(2,1)$ से जाती है, तथा यह बिन्दु जीवा को दो बराबर बराबर भागों में विभाजित करता है, होगा
यदि दीर्घवृत्त $3 x ^{2}+4 y ^{2}=12$ के एक बिन्दु $P$ पर अभिलम्ब, रेखा $2 x + y =4$ के समान्तर है तथा $P$ पर दीर्घवृत की स्पर्श रेखा $Q (4,4)$ से होकर जाती है, तो $PQ$ बराबर हैं
दिये गए अर्ध वृत्त में एक दीर्घवृत्त को अंतर्गत किया गया है। यह दीर्घवृत्त, अर्धवृत्त के एक वृत्तीय तोरण को दो भिन्न बिंदुओं में तथा अर्धवृत्त के व्यास को छूता है। यदि दीर्घ वृत्त का दीर्घ अक्ष और अर्ध वृत्त का व्यास समानान्तर है तो, ऐसे अधिकतम क्षेत्रफल वाले दीर्घवृत्त की उत्केन्द्रता का मान निम्न होगा:
रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-