दीर्घवृत्त $3{x^2} + 4{y^2} = 12$ के लिये नाभिलम्ब की लम्बार्इ है
$\frac{3}{2}$
$3$
$\frac{8}{3}$
$\sqrt {\frac{3}{2}} $
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5}),$ लघु अक्ष के अंत्य बिंदु $(±1,0)$
शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है
रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-
दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ के नाभिलम्ब की लम्बाई है