The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an $A.P.$ are $a, b, c,$ respectively. Show that $(q-r) a+(r-p) b+(p-q) c=0$
Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$
Therefore,
$a_{p}=t+(p-1) d=a$ .........$(1)$
$a_{q}=t+(q-1) d=b$ .........$(2)$
$a_{r}=t+(r-1) d=c$ .........$(3)$
Subtracting equation $(2)$ from $(1),$ we obtain
$(p-1-q+1) d=a-b$
$\Rightarrow(p-q) d=a-b$
$\therefore d=\frac{a-b}{p-q}$ .........$(4)$
Subtracting equation $(3)$ from $(2),$ we obtain
$(q-1-r+1) d=b-c$
$\Rightarrow(q-r) d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}$ .........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$
$\Rightarrow b p-c p+c q-a q+a r-b r=0$
$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$ ( By rearranging terms )
$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Thus, the given result is proved.
If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is
Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is
If all interior angle of quadrilateral are in $A.P.$ If common difference is $10^o$, then find smallest angle ? .............. $^o$
Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be