The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an $A.P.$ are $a, b, c,$ respectively. Show that $(q-r) a+(r-p) b+(p-q) c=0$
Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively.
The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$
Therefore,
$a_{p}=t+(p-1) d=a$ .........$(1)$
$a_{q}=t+(q-1) d=b$ .........$(2)$
$a_{r}=t+(r-1) d=c$ .........$(3)$
Subtracting equation $(2)$ from $(1),$ we obtain
$(p-1-q+1) d=a-b$
$\Rightarrow(p-q) d=a-b$
$\therefore d=\frac{a-b}{p-q}$ .........$(4)$
Subtracting equation $(3)$ from $(2),$ we obtain
$(q-1-r+1) d=b-c$
$\Rightarrow(q-r) d=b-c$
$\Rightarrow d=\frac{b-c}{q-r}$ .........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$
$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$
$\Rightarrow b p-c p+c q-a q+a r-b r=0$
$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$ ( By rearranging terms )
$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$
$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$
Thus, the given result is proved.
Which term of the sequence $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ is purely imaginary
Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.
If all interior angle of quadrilateral are in $A.P.$ If common difference is $10^o$, then find smallest angle ? .............. $^o$
If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is
If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.