किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए

$(q-r) a+(r-p) b+(p-q) c=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively. 

The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$

Therefore,

$a_{p}=t+(p-1) d=a$        .........$(1)$

$a_{q}=t+(q-1) d=b$        .........$(2)$

$a_{r}=t+(r-1) d=c$        .........$(3)$

Subtracting equation $(2)$ from $(1),$ we obtain

$(p-1-q+1) d=a-b$

$\Rightarrow(p-q) d=a-b$

$\therefore d=\frac{a-b}{p-q}$           .........$(4)$

Subtracting equation $(3)$ from $(2),$ we obtain

$(q-1-r+1) d=b-c$

$\Rightarrow(q-r) d=b-c$

$\Rightarrow d=\frac{b-c}{q-r}$          .........$(5)$

Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain

$\frac{a-b}{p-q}=\frac{b-c}{q-r}$

$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$

$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$

$\Rightarrow b p-c p+c q-a q+a r-b r=0$

$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$            ( By rearranging terms )

$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$

$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$

Thus, the given result is proved.

Similar Questions

यदि किसी समांतर श्रेणी की तीन संख्याओं का योग $24$ है तथा उनका गुणनफल $440$ है, तो संख्याएँ ज्ञात कीजिए।

माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :

  • [JEE MAIN 2024]

धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि

$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।

$II$. $a \leq b \leq c \leq d \leq e$

$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।

ऐसे कितने $5-$ टुपल्स सभव है ?

  • [KVPY 2017]

यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।

किसी समान्तर श्रेणी के प्रथम तथा तृतीय पदों का योग $12$ है, तथा प्रथम व द्वितीय पदों का गुणनफल $24$ है, तब श्रेणी का प्रथम पद होगा