किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए

$(q-r) a+(r-p) b+(p-q) c=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $t$ and $d$ be the first term and the common difference of the $A.P.$ respectively. 

The $n^{th}$ term of an $A.P.$ is given by, $a_{n}=t+(n-1) d$

Therefore,

$a_{p}=t+(p-1) d=a$        .........$(1)$

$a_{q}=t+(q-1) d=b$        .........$(2)$

$a_{r}=t+(r-1) d=c$        .........$(3)$

Subtracting equation $(2)$ from $(1),$ we obtain

$(p-1-q+1) d=a-b$

$\Rightarrow(p-q) d=a-b$

$\therefore d=\frac{a-b}{p-q}$           .........$(4)$

Subtracting equation $(3)$ from $(2),$ we obtain

$(q-1-r+1) d=b-c$

$\Rightarrow(q-r) d=b-c$

$\Rightarrow d=\frac{b-c}{q-r}$          .........$(5)$

Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain

$\frac{a-b}{p-q}=\frac{b-c}{q-r}$

$\Rightarrow(a-b)(q-r)=(b-c)(p-q)$

$\Rightarrow a q-b q-a r+b r=b p-b q-c p+c q$

$\Rightarrow b p-c p+c q-a q+a r-b r=0$

$\Rightarrow(-a q+a r)+(b p-b r)+(-c p+c q)=0$            ( By rearranging terms )

$\Rightarrow-a(q-r)-b(r-p)-c(p-q)=0$

$\Rightarrow a(q-r)+b(r-p)+c(p-q)=0$

Thus, the given result is proved.

Similar Questions

दो समांतर श्रेढ़ियों के $n$ पदों के योगफल का अनुपात $(3 n+8):(7 n+15)$ है। $12$ वें पद का अनुपात ज्ञात कीजिए।

समांतर श्रेणी  $3,7,11,15...$ के कितने पदों का योग $406$ होगा

यदि $a, b, c, d$ गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ गुणोत्तर श्रेणी में हैं।

यदि $a _{1}, a _{2}, a _{3}, \ldots \ldots \ldots, a _{ n }$ एक समान्तर श्रेढ़ी में है तथा $a_{1}+a_{4}+a_{7}+\ldots \ldots . .+a_{16}=114$, है, तो $a_{1}+a_{6}+a_{11}+a_{16}$ बराबर है

  • [JEE MAIN 2019]

यदि किसी समान्तर श्रेणी के तीन क्रमागत पदों का योग $51$ है तथा प्रथम व तृतीय पद का गुणनफल $273$ है, तो संख्यायें हैं