The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$
$NH _{2} NH _{2}+ H _{2} O \rightleftharpoons NH _{2} NH _{3}^{+}+ OH ^{-}$
From the $pH$ we can calculate the hydrogen ion concentration. Knowing hydrogen ion concentration and the ionic product of water we can calculate the concentration of hydroxyl ions. Thus we have:
$\left.| H ^{+}\right]=$ antilog $(- pH )$
$=$ antilog $(-9.7)=1.67 \times 10^{-10}$
$\left[ OH ^{-}\right]=K_{ w } /\left[ H ^{+}\right] =1 \times 10^{-14} / 1.67 \times 10^{-10} $
$=5.98 \times 10^{-5}$
The concentration of the corresponding hydrazinium ion is also the same as that of hydroxyl ion. The concentration of both these ions is very small so the concentration of the undissociated base can be taken equal to $0.004 \,M$ Thus,
$K_{ b }=\left[ NH _{2} NH _{3}^{+}\right]\left[ OH ^{\top}\right] /\left[ NH _{2} NH _{2}\right]$
$=\left(5.98 \times 10^{-5}\right)^{2} / 0.004=8.96 \times 10^{-7}$
$p K_{ b }=-\log K_{ b }=-\log \left(8.96 \times 10^{-7}\right)=6.04$
Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$
How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?
The $pH $ of a $0.01\,M$ solution of acetic acid having degree of dissociation $12.5\%$ is
A weak base $MOH$ of $0.1\,N$ concentration shows a $pH$ value of $9$ . What is the percentage degree of ionization of the base ? .......$\%$
The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-4}$. The $\mathrm{pH}$ of a $0.01 \ \mathrm{M}$ solution of its sodium salt is
The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.