The $A.M.$ of a $50$ set of numbers is $38$. If two numbers of the set, namely $55$ and $45$ are discarded, the $A.M.$ of the remaining set of numbers is
$38.5$
$37.5$
$36.5$
$36$
Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is
For $\mathrm{x} \geq 0$, the least value of $\mathrm{K}$, for which $4^{1+\mathrm{x}}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an $A.P.$ is equal to :
If ${\log _5}2,\,{\log _5}({2^x} - 3)$ and ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-
Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?