In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$

$\therefore$ According to the given information,

$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$      ......$(1)$

$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$       ........$(2)$

Subtracting $(2)$ from $(1),$ we obtain

$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$

$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$

$\Rightarrow(p-q) d=\frac{p-q}{p q}$

$\Rightarrow d=\frac{1}{p q}$

Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$

$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$

$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$

$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$

$=1+\frac{1}{2}(p q-1)$

$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$

$=\frac{1}{2}(p q+1)$

Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$

Similar Questions

If the sum of the series $2 + 5 + 8 + 11............$ is $60100$, then the number of terms are

The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is

If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$ where $a, b, c, d$ form a $G.P.$ Prove that $(q+p):(q-p)=17: 15$

If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is

  • [JEE MAIN 2022]

If the ratio of the sum of $n$ terms of two $A.P.'s$ be $(7n + 1):(4n + 27)$, then the ratio of their ${11^{th}}$ terms will be