In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$
It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$
$\therefore$ According to the given information,
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$ ......$(1)$
$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$ ........$(2)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$
$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$
$\Rightarrow(p-q) d=\frac{p-q}{p q}$
$\Rightarrow d=\frac{1}{p q}$
Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$
Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
The sum of $1 + 3 + 5 + 7 + .........$ upto $n$ terms is
Let $A B C D$ be a quadrilateral such that there exists a point $E$ inside the quadrilateral satisfying $A E=B E=C E=D E$. Suppose $\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is
If the sum of the series $54 + 51 + 48 + .............$ is $513$, then the number of terms are
If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.