In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$
It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$
$\therefore$ According to the given information,
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$ ......$(1)$
$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$ ........$(2)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$
$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$
$\Rightarrow(p-q) d=\frac{p-q}{p q}$
$\Rightarrow d=\frac{1}{p q}$
Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$
Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$
Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
If $x,y,z$ are in $A.P.$ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in other $A.P.$ then . . .
If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in
arithmetic progression for a real number $x$ then the value of the determinant $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ is equal to ...... .
If ${n^{th}}$ terms of two $A.P.$'s are $3n + 8$ and $7n + 15$, then the ratio of their ${12^{th}}$ terms will be