In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$
It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$
$\therefore$ According to the given information,
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$ ......$(1)$
$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$ ........$(2)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$
$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$
$\Rightarrow(p-q) d=\frac{p-q}{p q}$
$\Rightarrow d=\frac{1}{p q}$
Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$
Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$
The difference between an integer and its cube is divisible by
If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$ where $a, b, c, d$ form a $G.P.$ Prove that $(q+p):(q-p)=17: 15$
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................
Which term of the sequence $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ is purely imaginary
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$