The difference between any two consecutive interior angles of a polygon is $5^{\circ}$ If the smallest angle is $120^{\circ},$ find the number of the sides of the polygon.
The angles of the polygon will form an $A.P.$ with common difference $d$ as $5^{\circ}$ and first term $a$ as $120^{\circ}$
It is known that the sum of all angles of a polygon with $n$ sides is $180(n-2)$
$\therefore S_{n}=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}\left[240^{\circ}+(n-1) 5^{\circ}\right]=180^{\circ}(n-2)$
$\Rightarrow n[240+(n-1) 5]=360(n-2)$
$\Rightarrow 240 n+5 n^{2}-5 n=360 n-720$
$\Rightarrow 5 n^{2}-125 n+720=0$
$\Rightarrow n^{2}-25 n+144=0$
$\Rightarrow n^{2}-16 n-9 n+144=0$
$\Rightarrow n(n-16)-9(n-16)=0$
$\Rightarrow(n-9)(n-16)=0$
$\Rightarrow n=9$ or $16$
If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$ is
If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in
Suppose the sum of the first $m$ terms of an arithmetic progression is $n$ and the sum of its first $n$ terms is $m$, where $m \neq n$. Then, the sum of the first $(m+n)$ terms of the arithmetic progression is
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$
If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is