The difference between any two consecutive interior angles of a polygon is $5^{\circ}$ If the smallest angle is $120^{\circ},$ find the number of the sides of the polygon.
The angles of the polygon will form an $A.P.$ with common difference $d$ as $5^{\circ}$ and first term $a$ as $120^{\circ}$
It is known that the sum of all angles of a polygon with $n$ sides is $180(n-2)$
$\therefore S_{n}=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}\left[240^{\circ}+(n-1) 5^{\circ}\right]=180^{\circ}(n-2)$
$\Rightarrow n[240+(n-1) 5]=360(n-2)$
$\Rightarrow 240 n+5 n^{2}-5 n=360 n-720$
$\Rightarrow 5 n^{2}-125 n+720=0$
$\Rightarrow n^{2}-25 n+144=0$
$\Rightarrow n^{2}-16 n-9 n+144=0$
$\Rightarrow n(n-16)-9(n-16)=0$
$\Rightarrow(n-9)(n-16)=0$
$\Rightarrow n=9$ or $16$
The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is
For any three positive real numbers $a,b,c$ ; $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$ then
If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $
If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$ is
If the sum of first $n$ terms of an $A.P.$ is $cn(n -1)$ , where $c \neq 0$ , then sum of the squares of these terms is