The difference between any two consecutive interior angles of a polygon is $5^{\circ}$ If the smallest angle is $120^{\circ},$ find the number of the sides of the polygon.
The angles of the polygon will form an $A.P.$ with common difference $d$ as $5^{\circ}$ and first term $a$ as $120^{\circ}$
It is known that the sum of all angles of a polygon with $n$ sides is $180(n-2)$
$\therefore S_{n}=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=180^{\circ}(n-2)$
$\Rightarrow \frac{n}{2}\left[240^{\circ}+(n-1) 5^{\circ}\right]=180^{\circ}(n-2)$
$\Rightarrow n[240+(n-1) 5]=360(n-2)$
$\Rightarrow 240 n+5 n^{2}-5 n=360 n-720$
$\Rightarrow 5 n^{2}-125 n+720=0$
$\Rightarrow n^{2}-25 n+144=0$
$\Rightarrow n^{2}-16 n-9 n+144=0$
$\Rightarrow n(n-16)-9(n-16)=0$
$\Rightarrow(n-9)(n-16)=0$
$\Rightarrow n=9$ or $16$
If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in
The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is