The acceleration of an electron due to the mutual attraction between the electron and a proton when they are $1.6 \;\mathring A$ apart is,$\left(m_{e} \simeq 9 \times 10^{-31} kg , e=1.6 \times 10^{-19} C \right)$
(Take $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}$ )
$10^{25} \;m / s ^{2}$
$10^{24} \;m / s ^{2}$
$10^{23} \;m / s ^{2}$
$10^{22} \;m / s ^{2}$
A charge ${q_1}$ exerts some force on a second charge ${q_2}$. If third charge ${q_3}$ is brought near, the force of ${q_1}$ exerted on ${q_2}$
A thin metallic wire having cross sectional area of $10^{-4} \mathrm{~m}^2$ is used to make a ring of radius $30 \mathrm{~cm}$. A positive charge of $2 \pi \mathrm{C}$ is uniformly distributed over the ring, while another positive charge of $30$ $\mathrm{pC}$ is kept at the centre of the ring. The tension in the ring is__________ $\mathrm{N}$; provided that the ring does not get deformed (neglect the influence of gravity). (given, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ units)
An isolated solid metallic sphere is given $ + Q$ charge. The charge will be distributed on the sphere
Two small spheres each having the charge $ + Q$ are suspended by insulating threads of length $L$ from a hook. This arrangement is taken in space where there is no gravitational effect, then the angle between the two suspensions and the tension in each will be
A cube of side $b$ has a charge $q$ at each of its vertices. The electric field due to this charge distribution at the centre of this cube will be