4-1.Complex numbers
easy

$\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$ का कोणांक होगा  

A

$\pi /5$

B

$2\pi /5$

C

$\pi /10$

D

$\pi /15$

Solution

(c) $\sin \frac{\pi }{5} + i\,\left( {1 – \cos \frac{\pi }{5}} \right)$ $ = 2\sin \frac{\pi }{{10}}\cos \frac{\pi }{{10}} + i2{\sin ^2}\frac{\pi }{{10}}$

$ = 2\sin \frac{\pi }{{10}}\left( {\cos \frac{\pi }{{10}} + i\sin \,\frac{\pi }{{10}}} \right)$

कोणांक के लिए $\tan \theta  = \,\frac{{\sin \frac{\pi }{{10}}}}{{\cos \frac{\pi }{{10}}}} = \tan \frac{\pi }{{10}}$

$⇒ \theta  = \frac{\pi }{{10}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.