If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then
${z_1} = {z_2}$
${\bar z_1} = {z_2}$
${z_1} + {z_2} = 0$
${\bar z_1} = {\bar z_2}$
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if