4-1.Complex numbers
easy

If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is

A

Purely real

B

Purely imaginary

C

Zero

D

Undefined

Solution

(b)$z = x + iy \Rightarrow |z{|^2} = {x^2} + {y^2} = 1$ …..$(i)$
Now, $\left( {\frac{{z – 1}}{{z + 1}}} \right) = \frac{{(x – 1) + iy}}{{(x + 1) + iy}} \times \frac{{(x + 1) – iy}}{{(x + 1) – iy}}$
$ = \frac{{({x^2} + {y^2} – 1) + 2iy}}{{{{(x + 1)}^2} + {y^2}}}$$ = \frac{{2iy}}{{{{(x + 1)}^2} + {y^2}}}$ [by equation $(i)$]
Hence, $\left( {\frac{{z – 1}}{{z + 1}}} \right)$is purely imaginary.
 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.