मूल बिन्दु से वृत्त ${(x - 7)^2} + {(y + 1)^2} = 25$ पर खींची गयी दो स्पर्श रेखाओं के बीच का कोण है
$0$
$\frac{\pi }{3}$
$\frac{\pi }{6}$
$\frac{\pi }{2}$
बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो कि सरल रेखा $y = mx + c$ के लम्बवत् है, होगा
वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(a\cos \alpha ,a\sin \alpha )$ पर स्पर्श रेखा की प्रवणता है
वृत्त ${x^2} + {y^2} = 4$ के किसी बिन्दु $P$ पर स्पर्श रेखा अक्षों को $A$ व $B$ पर मिलती है, तो
यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये