मूल बिन्दु से वृत्त ${(x - 7)^2} + {(y + 1)^2} = 25$ पर खींची गयी दो स्पर्श रेखाओं के बीच का कोण है

  • A

    $0$

  • B

    $\frac{\pi }{3}$

  • C

    $\frac{\pi }{6}$

  • D

    $\frac{\pi }{2}$

Similar Questions

बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है

वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो कि सरल रेखा $y = mx + c$ के लम्बवत् है, होगा 

वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(a\cos \alpha ,a\sin \alpha )$ पर स्पर्श रेखा की प्रवणता है

वृत्त ${x^2} + {y^2} = 4$ के किसी बिन्दु $P$ पर स्पर्श रेखा अक्षों को $A$ व $B$ पर मिलती है, तो

यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये