किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -
$150^{\circ}$
$120^{\circ}$
$60^{\circ}$
$30^{\circ}$
यदि $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, तो $\theta = $
$A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ और $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ दो समूह होते हैं। तब
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -
समीकरण $a\sin x + b\cos x = c$ , जहाँ $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ के हलों की संख्या है
यदि $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, तो $\sin \theta $ का मान है