वक्र $|x| + |y|\, = 1$ से परिबद्ध क्षेत्र का क्षेत्रफल है
$\sqrt 2 $
$1$
$\sqrt 3 $
$2$
उस सरल रेखा का समीकरण जो $( - a,\;0)$ से गुजरती है एवं अक्षों के साथ ‘$T$’ क्षेत्रफल का त्रिभुज बनाती है, है
एक बिन्दु इस प्रकार गति करता है कि इसकी बिन्दु $(4,\,0)$ से दूरी सरल रेखा $x = 16$ से दूरी की आधी रहती है, तो बिन्दु का बिन्दुपथ है
एक त्रिभुज का परिकेंद्र मूल बिन्दु पर है तथा उसका केन्द्रक, बिन्दुओं $\left(a^{2}+1, a^{2}+1\right)$ तथा $(2 a,-2 a)$, $a \neq 0$ को मिलाने वाले रेखाखंड का मध्य बिंदु है, तो किसी $a$ के लिए इस त्रिभुज का लंब केन्द्र जिस रेखा पर स्थित है, वह है
तीन दिए गए बिंदुओं $P , Q , R$ में $P (5,3)$ है तथा $R$, $x$-अक्ष पर स्थित है। यदि $RQ$ का समीकरण $x-2 y=2$ है तथा $PQ , x$-अक्ष के समांतर है, तो $\triangle PQR$ का केंद्रक जिस रेखा पर स्थित है, वह है
यदि दो लम्बवत् रेखाओं से किसी बिन्दु की दूरी का योग $1$ है, तो इस बिन्दु का बिन्दुपथ है