रेखा $x\sin \alpha + y\cos \alpha = \sin 2\alpha $ तथा अक्षों से बने त्रिभुज का क्षेत्रफल होगा
$\sin 2\alpha $
$\cos 2\alpha $
$2\sin 2\alpha $
$2\cos 2\alpha $
एक सरल रेखा $ax + by + c = 0$ सदैव बिन्दु $(1, -2)$ से गुजरती है, तब $a, b, c$ होंगे
किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं
त्रिभुज $PQR$ वृत्त $x^2$+$y^2$=$25$ से घिरा हुआ है। यदि $Q$ और $R$ के निर्देशांक क्रमशः $(3,4)$ और ;$(-4,3)$ हैं, तब $\angle \,QPR$ का मान है
एक रेखा $L$, बिन्दुओं $(1, 1)$ व $(2, 0)$ से होकर जाती है एवं एक अन्य रेखा $L'$, बिन्दु $\left( {\frac{1}{2},0} \right)$ से होकर जाती है एवं $L$ पर लम्ब है, तो रेखाओं $L$ व $L'$ तथा $y$-अक्ष द्वारा निर्मित त्रिभुज का क्षेत्रफल है
रेखाओं $y-x=0, x+y=0$ और $x-k=0$ से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।