9.Straight Line
hard

माना एक समांतर चतुर्भुज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ तथा $\mathrm{D}(\gamma, \delta)$ है। यदि बिंदु $C$ रेखा $2 x-y=5$ पर है तथा बिंदु $D$, रेखा $3 x-2 y=6$ पर है तो $|\alpha+\beta+\gamma+\delta|$ का मान बराबर है ...............

A

$30$

B

$31$

C

$32$

D

$33$

(JEE MAIN-2024)

Solution

$\mathrm{P} \equiv\left(\frac{\alpha-2}{2}, \frac{\beta-1}{2}\right) \equiv\left(\frac{\gamma+1}{2}, \frac{\delta}{2}\right) $

$ \frac{\alpha-2}{2}=\frac{\gamma+1}{2} \text { and } \frac{\beta-1}{2}=\frac{\delta}{2} $

$\Rightarrow \alpha-\gamma=3 \ldots . .(1), \beta-\delta=1 \ldots ….(2)$

Also, $(\gamma, \delta)$ lies on $3 x-2 y=6$

$3 \gamma-2 \delta=6$

and $(\alpha, \beta)$ lies on $2 x-y=5$

$\Rightarrow 2 \alpha-\beta=5 \text {……(4) }$

Solving $(1), (2), (3), (4)$

$\alpha=-3, \beta=-11, \gamma=-6, \delta=-12$

$|\alpha+\beta+\gamma+\delta|=32$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.