- Home
- Standard 11
- Mathematics
त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)
$(I)$ $[B C X]=[B C Y]$
$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
Neither $I$ nor $II$
Only $I$
Only $II$
Both $I$ and $II$
Solution

(d)
$A B C$ is a triangle points $X$ and $Y$ on $A B$ and $A C$ respectively.
$X Y$ is parallel to $B C$.
$I$. Area of $B C X:$ Area of $B C Y$
It is true because same base between same parallels.
$II$. Area of $\triangle A C X=\frac{1}{2}(A X)(A C) \sin A$
Area of $\triangle A B Y=\frac{1}{2}(A Y)(A B) \sin A$
$\therefore$ (Area of $\triangle A C X)$ (Area of $\triangle A B Y)$
$=\frac{1}{2}(A X)(A C) \sin A \times \frac{1}{2}(A Y)(A B) \sin A$
$=\frac{1}{2}(A X)(A Y) \sin A \times \frac{1}{2}(A B)(A C) \sin A$
$=(\text { Area of } \triangle A X Y) \text { (Area of } \triangle A B C)$
Hence,$I$ and $II$ both are true.