For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then
${\mathop{\rm Re}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Im}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Re}\nolimits} ({z_1}{z_2}) = 0$
${\mathop{\rm Im}\nolimits} ({z_1}{z_2}) = 0$
The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
The values of $z$for which $|z + i|\, = \,|z - i|$ are
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10},$ then