For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then
${\mathop{\rm Re}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Im}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Re}\nolimits} ({z_1}{z_2}) = 0$
${\mathop{\rm Im}\nolimits} ({z_1}{z_2}) = 0$
$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ is equal to
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
If $|z - 25i| \le 15$, then $|\max .amp(z) - \min .amp(z)| = $
If $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ and $|2z_1 +3z_2 +4z_3| =9$ ,then value of $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ is equal to:-
Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$