प्रथम $n$ प्राकृत संख्याओं का समान्तर माध्य होगा
$\frac{{n - 1}}{2}$
$\frac{{n + 1}}{2}$
$\frac{n}{2}$
$n$
किन्हीं तीन धनात्मक वास्तविक संख्याओं $a, b$ तथा $c$ के लिए $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ है, तो:
एक पूर्णांक तथा इसके घन का अन्तर विभाजित है
यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा
माना श्रेणी ${a_1},{a_2},{a_3},.............{a_{2n}}$ एक समान्तर श्रेणी है, तब $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :