એક સમબાજુ ત્રિકોણનો પાયો $y-$ અક્ષ પર એવી રીતે આવેલો છે કે તેનું મધ્યબિંદુ ઊગમબિંદુ છે. આ સમબાજુ ત્રિકોણની બાજુ $2a$ હોય, તો તેનાં શિરોબિંદુઓ શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $ABC$ be the given equilateral triangle with side $2 a$.

Accordingly, $A B=B C=C A=2 a$

Assume that base $BC$ lies along the $y-$ axis such that the mid-point of $BC$ is at the origin.

i.e., $BO = OC = a ,$ where $O$ is the origin.

Now, it is clear that the coordinates of point $C$ are $(0, a),$ while the coordinates of point $B$ are $(0,-a).$

It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.

Hence, vertex $A$ lies on the $y-$ axis.

On applying Pythagoras theorem to $\Delta$ $AOC$, we obtain

$(A C)^{2}=(O A)^{2}+(O C)^{2}$

$\Rightarrow(2 a)^{2}=(O A)^{2}+a^{2}$

$\Rightarrow 4 a^{2}-a^{2}=(O A)^{2}$

$\Rightarrow(O A)^{2}=3 a^{2}$

$\Rightarrow O A=\sqrt{3} a$

$\therefore$ Coordinates of point $A=(\pm \sqrt{3} a, 0)$

Thus, the vertices of the given equilateral triangle are $(0, a),(0,-a)$, and$(\sqrt{3} a, 0)$ or $(0, a),(0,-a)$, and $(-\sqrt{3} a, 0)$

872-s10

Similar Questions

એક $8$ લંબાઈનો સળિયોએ રીતે ખસે છે કે જેથી તેના છેડાઓ $A$ અને $B$ એ હંમેશા અનુક્રમે રેખાઓ $x-y+2=0$ અને $y+2=0$ પર રહે છે. જો બિંદુ $P$ ના બિંદુપથએ સળિયા $AB$ નું $2: 1$ ગુણોતરમાં અંત:વિભાજન કરે છે તે  $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$ આપેલ છે તો $\alpha-\beta-\gamma$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

જો $P = (1, 0) ; Q = (-1, 0) \,\,અને,\, R = (2, 0)$ એ ત્રણ બિંદુઓ આપેલ હોય તો બિંદુ $S$ ના બિંદુપથનું સમીકરણ ............ દર્શાવે કે જેના માટે  $SQ^2 + SR^2 = 2 SP^2$ થાય 

ચતુષ્કોણની બાજુઓ $AB, BC, CD$ અને $DA$ અનુક્રમે $x + 2y = 3, x = 1, x - 3y = 4, 5x + y + 12 = 0$ સમીકરણો ધરાવે, તો વિકર્ણ $AC$ અને $BD$ વચ્ચેનો ખૂણો .....$^o$ શોધો.

રેખાઓ $y = mx, y = mx + 1, y = nx, y = nx + 1$ દ્વારા બનતા સમાંતર બાજુ ચતુષ્કોણનું ક્ષેત્રફળ....

શિરોબિંદુુ $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ અને $\mathrm{C}(\gamma, \delta)$ તથા ખૂણાઓ $\angle A B C=\frac{\pi}{6}$ અને $\angle B A C=\frac{2 \pi}{3}$ વાળો એક ત્રિકોણ $\mathrm{ABC}$ ધ્યાને લો. જો બિંદુઆ $\mathrm{B}$ અને $\mathrm{C}$ રેખા $y=x+4$ પર આવેલા હોય, તો $\alpha^2+y^2=$ .........

  • [JEE MAIN 2024]