$2 a$ भुजा के समबाहु त्रिभुज का आधार $y-$ अक्ष के अनुदिश इस प्रकार है कि आधार का मध्य बिंदु मूल बिंदु पर है। त्रिभुज के शीर्ष ज्ञात कीजए।
Let $ABC$ be the given equilateral triangle with side $2 a$.
Accordingly, $A B=B C=C A=2 a$
Assume that base $BC$ lies along the $y-$ axis such that the mid-point of $BC$ is at the origin.
i.e., $BO = OC = a ,$ where $O$ is the origin.
Now, it is clear that the coordinates of point $C$ are $(0, a),$ while the coordinates of point $B$ are $(0,-a).$
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex $A$ lies on the $y-$ axis.
On applying Pythagoras theorem to $\Delta$ $AOC$, we obtain
$(A C)^{2}=(O A)^{2}+(O C)^{2}$
$\Rightarrow(2 a)^{2}=(O A)^{2}+a^{2}$
$\Rightarrow 4 a^{2}-a^{2}=(O A)^{2}$
$\Rightarrow(O A)^{2}=3 a^{2}$
$\Rightarrow O A=\sqrt{3} a$
$\therefore$ Coordinates of point $A=(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, a),(0,-a)$, and$(\sqrt{3} a, 0)$ or $(0, a),(0,-a)$, and $(-\sqrt{3} a, 0)$
एक समबाहु त्रिभुज का आधार $x + y = 2$ तथा शीर्ष $(2, -1)$ है। त्रिभुज की भुजा की लम्बाई है
एक समद्विबाहु त्रिभुज की दो बराबर भुजाओं के समीकरण $7x - y + 3 = 0$ तथा $x + y - 3 = 0$ हैं और तीसरी भुजा बिन्दु $(1, -10)$ से गुजरती है। तीसरी भुजा का समीकरण है
${x^2} - 9{y^2} = 0$ और $x = 4$ के द्वारा निर्मित त्रिभुज है
समान लम्याई और आकार $(shape)$ की दो मोमर्बत्तियां हैं, दोनों समान दर से जलती है. पहली मोमथती $5$ घटें में और दूसरी मोमथत्ती $3$ घंटे में पूरी जल जाती है. दोनों मोमबत्तियां एक साथ जलाई जाती है. कितनें मिनटों के बाद पहली मोमबत्ती की लम्बाई दूसरी मोमथत्ती की तीन गुनी रह जाएगी ?
उन सरल रेखाओं के समीकरण, जो अक्षों के साथ समकोण त्रिभुज बनाते हैं, जिसका क्षेत्रफल $6$ वर्ग इकाई एवं कर्ण $5$ इकाई है