- Home
- Standard 11
- Mathematics
$2 a$ भुजा के समबाहु त्रिभुज का आधार $y-$ अक्ष के अनुदिश इस प्रकार है कि आधार का मध्य बिंदु मूल बिंदु पर है। त्रिभुज के शीर्ष ज्ञात कीजए।
Solution

Let $ABC$ be the given equilateral triangle with side $2 a$.
Accordingly, $A B=B C=C A=2 a$
Assume that base $BC$ lies along the $y-$ axis such that the mid-point of $BC$ is at the origin.
i.e., $BO = OC = a ,$ where $O$ is the origin.
Now, it is clear that the coordinates of point $C$ are $(0, a),$ while the coordinates of point $B$ are $(0,-a).$
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex $A$ lies on the $y-$ axis.
On applying Pythagoras theorem to $\Delta$ $AOC$, we obtain
$(A C)^{2}=(O A)^{2}+(O C)^{2}$
$\Rightarrow(2 a)^{2}=(O A)^{2}+a^{2}$
$\Rightarrow 4 a^{2}-a^{2}=(O A)^{2}$
$\Rightarrow(O A)^{2}=3 a^{2}$
$\Rightarrow O A=\sqrt{3} a$
$\therefore$ Coordinates of point $A=(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, a),(0,-a)$, and$(\sqrt{3} a, 0)$ or $(0, a),(0,-a)$, and $(-\sqrt{3} a, 0)$